Insecticidal and Repellent Effects of Some Local Plants Against the Rice Weevil (Sitophilus oryzae L.) Infesting Pearl Millet Stored in Northern Benin
Laboratory of Applied Zoology and Plant Health (ZASVE). National High School of Applied Biosciences and Biotechnologies (ENSBBA). National University of Sciences. Technologies. Engineering and Mathematics (UNSTIM). PO Box 14 Dassa-Zoumé. Benin
The rice weevil, Sitophilus oryzae L. is a widely distributed storage insect pest that causes tremendous damage to stored pearl millet. Farmers employ synthetic chemical insecticides to overcome this constraint, which have significant impacts on human health and the environment. The use of plant extracts and plants can be an alternative to these insecticides. The objective of this study is to evaluate the insecticidal and insect repellent properties of powders and ethanoic extracts of Ocimum gratissimum L., Ocimum basilicium L., Parkia biglobosa (Jacq.) R.Br. ex G.Don., and Azadirachta indica A. Juss. against S.oryzae using antixenosis and antibiosis methods. Deltamethrine insecticide and Bextoxin served as positive controls for antibiosis and antixenosis tests respectively. Untreated pearl millet were used as negative control. According to the results, the leaf powders and ethanolic extract of the four plants had repellent properties and were more repellent than synthetic insecticides. The leaf powder of O. basilicium was more repellent after 1 h (88.24%) and 24 h (80.11%), while that of P. bligobosa was more repellent after 12 h of exposure (78.57%).The P. biglobosa extract exhibited the highest rate of repulsion against S. oryzae at 5% concentration after 2 h of exposure. Deltamethrine had a greater insecticidal effect than powders and resulted in complete mortality (100%) of S. oryzae adults from the first day of treatment. The ethanol extract of O. gratissimum caused the greatest contact toxicity (100% mortality) at 2.5% concentration after 21 days of treatment. Similarly O. gratissimum had a high fumigant toxicity (92.5% mortality) at 7.5 % (160 µL/L of air) of concentration after 24 h after exposure. The results of this study demonstrated that the powders and extracts of the four tested medicinal plants could be utilized as biopesticides, a potential alternative for controlling S. oryzae in stored pearl millet.
Keywords: Rice weevil, Repellence, Contact toxicity, Fumigation toxicity, Pearl millet
References:
Abbott, W.S. (1925) A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18, 265-267. http://dx.doi.org/10.1093/jee/18.2.265a
Adéoti, K., Kouhoundé, S. H. S., Noumavo, P. A., Baba-Moussa F., & Toukourou F. (2017). Nutritional value and physicochemical composition of pearl millet (Pennisetum glaucum) produced in Benin. Food Sciences of Food Sciences. 7(1):92-96. http://dx.doi.org/10.15414/jmbfs.2017.7.1.92-96
Akol A. M. Sithanantham S. Njagi P. G. N. Varela A. Mueke J. M. (2002). Relative safety of sprays of two neem insecticides to Diadegma mollipla (Holmgren). aparasitoid of the diamondback moth: effects on adult longevity and foraging behaviour. Crop Protection. 21: 853–859. https://doi.org/10.1016/S0261-2194(02)00052-2
Aryani, D. S., & Auamcharoen, W. (2016). Repellency and contact toxicity of crude extracts from three Thai plants (Zingiberaceae) against maize grain weevil, Sitophilus zeamais (Motschlusky) (Coleoptera: Curculionidae). Journal of Biopesticides, 9(1), 52. http://dx.doi.org/10.57182/jbiopestic.9.1.52-62
Asawalam, E F, & Hassanali, A. (2006). Constituants de l'huile essentielle de Vernonia amygdalina comme agents protecteurs contre le charançon du maïs. Agroécosystèmes tropicaux et subtropicaux, 6 (2)
Bagul G D. Dulera J G. Rank V. (2023). Efficacy of plant powders as seed protectant against Corcyra cephalonica (Stainton) in stored pearl millet.The Pharma Innovation Journal.12 (12): 1960-1965.
Bhargude, A. R.; Patil, S. K., and Bhede, B. V. (2021). Susceptibility of selected cereal crops in storage to rice weevil, Sitophilus oryzae (Linnaeus). J. Pharm. Innov. 10(1): 570-575
Chebet, F., Ogendo, J O, & Kamau, A W (2013). Bioactivité de poudres végétales sélectionnées contre Prostephanus truncatus (Coleoptera : Bostrichidae) dans les grains de maïs stockés. Plant Protection Science, 49 (1).
Dagba, A. R., Missihoun A. A., Adoukonou-Sagbadja H., Houéhanou T. D., Assogbadjo A. E., Ahanhanzo C., & Agbangla C. (2014). Traditionnal knowledge on millet (Pennisetuum glaucum (L.) R. Br) genetic resources conservation in Benin: Local taxonomy and cultivar characteristics. Annales des sciences agronomiques 18(2), 41-60.
Dansi, A., Vodouhè, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., Loko, Y. L., Dossou-Aminon, I., & Akpagana, K. (2012). Diversity of the Neglected and Underutilized Crop species of importance in Benin. The Scientific World Journal. Volume 2012, Article ID 932947, 19 p. http://dx.doi.org/10.1100/2012/932947
FAO, FIDA, OMS, PAM and UNICEF State of Food Security and Nutrition in the World (2022). Reorient food and agricultural policies to make healthy eating more affordabl. Rome, FAO. https://doi.org/10.4060/cc0639fr
Gusmão N. M. S. a, d’Oliveira J. V., Navarro D. M. A. F., Dutra K. A., da Silva W. A.,Wanderley M. J. A. (2013). Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. Essential oils in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae). Journal of Stored Products Research, 54: 41-47. http://dx.doi.org/10.1016/j.jspr.2013.02.002
Hamouda AK, Wang ZJ, Stewart DS, Jain AD, Glennon RA, Cohen JB. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor. Mol Pharmacol. 2015 Jul;88(1):1-11. doi: 10.1124/mol.115.098913. Epub 2015 Apr 13. Erratum in: Mol Pharmacol. 2016 Jan;89(1):141. https://doi.org/10.1124/mol.115.098913err
Iloba. B. N. and Ekrakene. T. (2006). Comparative assessment of insecticidal effect of Azadirachta indica. Hyptis suaveolens and Callosobruchus maculatus. Journal of Biological Sciences 63. 626–630. https://doi.org/10.3923/jbs.2006.626.630
Isah, A Y et Nwobodo, E I (2009). Sensibilisation et utilisation des moustiquaires imprégnées d'insecticide chez les femmes enceintes dans les établissements de santé tertiaires du nord-ouest du Nigéria. Revue nigériane de médecine, 18 (2).
Isman, M. (2002). Antiappétants pour insectes. Pesticide outlook, 13 (4), 152-157. https://doi.org/10.1039/B206507J
Kéita S. M. Vincent C. Schmit J-P. Arnason J. T. Bélanger A. (2001). Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) [Coleoptera: Bruchidae]. Journal of Stored Products Research. 37: 339–349 https://doi.org/10.1016/S0022-474X(00)00034-5
K?y? M. Malejky N. Nowak-Chmura M. (2017). The repellent effect of plants and their active substances against the beetle storage pests. Journal of Stored Products Research. 74: 66 -77. https://doi.org/10.1016/j.jspr.2017.10.006
Kossou D K and Aho N (1993). Stockage et conservation des grains alimentaires tropicaux : principes et pratiques. Les éditions du Flamboyant, Cotonou, Bénin, p. 125
Mansoor-ul-Hasan, S M, Farhan, M., Najam-ul-Hassan, M., Haidri, S R, Bukhari, M., Gul, H T, et Khan, A. (2014). Potentiel répulsif d'Azadirachta indica A. Juss. etGlycyrrhizaglabra L. contre le bruchide du niébé, Callosobruchus chinensis L. (Coleoptera : Bruchidae). Journal de la biodiversité et des sciences de l’environnement, 5 (1), 405-409.
McDonald, L L, Guy, R H et Speirs, R D (1970). Évaluation préliminaire de nouveaux matériaux candidats comme substances toxiques, répulsives et attractives contre les insectes des produits stockés (n° 882). Service de recherche agricole, ministère de l'Agriculture des États-Unis.
Musa A. K. and Lawal M. T. (2016). Insecticidal activity of Citrus sinensis (L.) and Parkia biglobosa (Jacq.) extracts against Trogoderma granarium Everts. Agriculture & Forestry. 62 (3): 197-206. https://doi.org/10.17707/AgricultForest.62.3.17
Nattudurai, G., Irudayaraj, S S, Paulraj, M G, Baskar, K., & Ignacimuthu, S. (2015). Activités insecticides et répulsives des extraits de Toddalia asiatica (L.) Lam. contre trois principaux ravageurs des produits stockés. Entomologie, ornithologie et herpétologie, 4 (2), 1.
Nta. A. I.. A. A. J. Mofunanya. V. B. Ogar. and P. A. Azuike. (2019). “Evaluation of the Insecticidal Potential of Six Plants Leaves Powders Against Acanthoscelides Obtectus Say on Stored Phaseolus vulgaris L”. Journal of Experimental Agriculture International 36 (4):1-12. https://doi.org/10.9734/jeai/2019/v36i430243.
Ogendo, J. O., Deng, A. L., Belmain, S. R., Walker, D. J., & Musandu, A. A. O. (2004). Effect of insecticidal plant materials, Lantana camara L. and Tephrosia vogelii Hook, on the quality parameters of stored maize grains. Journal of food technology in Africa, 9(1), 29-35.
Othira J O, Onek L A, Deng L A, Omolo E. O. (2009). Insecticidal potency of H. spicigera preparations against Sitophilus zeamais (L.) and Tribolium castaneum (Herbst) on stored maize grains. Afr J AgricRes 4:187–192 https://doi.org/10.5897/AJAR.9000438
Padin SB, Fuse C, Urrutia MI, Bello GMD. 2013. Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat. Bulletin of Insectology; 66:45-49
Pugazhvendon S R, Elumalai K, Ronald R P and Soundararajan M. (2009). Répulsifac-tivity of chosen plant species against Tri-boliumcastaneum. World Journal of Zool-ogy. 4(3): 188-190.
Rajendran, S., & Chayakumari, C. (2003). Infestation et contrôle des insectes dans les grains de sorgho et de mil stockés.
Remesh V. A. Raveendran A. Bincy K. Wagh V. S. Dastager S. G. Babu C. S. V. (2022). Insights on biorational potential of Ocimum gratissimum essential oil and its binary combination with monoterpene phenol for control of rice weevil (Sitophilus oryzae) and aflatoxigenic fungi. Food Bioscience. 50: 102019. https://doi.org/10.1016/j.fbio.2022.10201
Rodríguez-González Á. Álvarez-García S. González-López Ó. Da Silva F. Casquero P A. (2019). Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus. Insect Pest of the Common Bean (Phaseolus vulgaris. L.). Insects. 10(5):151. https://doi.org/10.3390/insects10050151
Shah M. M. R., Prodhan M. D. H., Siddquie M. N. A., Mamun M. A. A. and Shahjahan (2008). Repellent Effect of Some Indigenous Plant Extracts against Saw-Toothed Grain Beetle, Oryzaephilus surinamensis (L.). Int. J. Sustain. Crop Prod. 3(5):51-54.
Tofel K. H. Kosma P. Stähler M. Adler C. Nukenine E. N. (2017). Insecticidal products from Azadirachta indica and Plectranthus glandulosus growing in Cameroon for the protection of stored cowpea and maize against their major insect pests. Industrial Crops and Products. 110 (30):58-64. https://doi.org/10.1016/j.indcrop.2017.09.051
Tofel. K. H.. Gaza. D.. Fotso. G. T. et al., (2024). Ability of Allophylus africanus (Sapindaceae) extracts and Azadirachta indica (Meliaceae) seed oil to protect maize against Sitophilus zeamais Motschulsky. 1855 (Coleoptera: Curculionidae) simulating farmer storage condition. J Plant Dis Prot 131. 1561–1571. https://doi.org/10.1007/s41348-024-00919-9
Toudert-Taleb K. Hedjal-Chebheb M. Derdah Y. Kellouche A. (2021). Repellent and insecticidal effects of basil essential oil (Ocimum gratissimum) from Kabylie (Algeria) on Rhyzopertha dominica F. (Coleoptera: Bostrichydae): impact of treatment on the physicochemical and rheological qualities of common wheat flour (Triticum aestivum). African Entomology. 29(2): 547-562. https://doi.org/10.4001/003.029.0547
Vanisha, S. N., Dhaduk, J. J., Sareen, N., Shahu, T., Desai, R. (2011). Potential Functional Implications of Pearl millet (Pennisetum glaucum) in Health and Disease. J. Appl. Pharm.Sci. 1(10):62-67.